

TITLE OF THE Curricula/Module

PHOTOGRAMMETRY AND REMOTE SENSING

NKSU /Kazakhstan

2020

1. Passport of curriculum

1.1 The scope of the curriculum in credits and academic hours. Form of control.

To	tal	Dis	tribut oc	ion of cupati		s by		
Credits	Hours	lectures	practical	laboratory /	IWST	SWI	Preparation and passing of the exam	Control form, examination form
5	150	15	30	-	15	75	15	written exam

1.2 The purpose of the curriculum and the expected learning outcomes.

The purpose of the curriculum is to study the principles of construction and functioning of modern computer vision systems, as well as methods of digital image processing and pattern recognition using machine learning systems.

Expected learning outcomes:

Know: the general composition and classification of computer vision systems; principles of operation of the elements of computer vision systems; basic algorithmic solutions for image processing; ways to implement basic logical functions of image processing; methods of pattern recognition in various systems and the tasks for which they are used; machine learning methods for pattern recognition.

Be able to: analyze the characteristics of computer vision systems by image parameters; adapt vision systems for use in specific technological processes; Have the skills to use the necessary pattern recognition methods to solve applied problems, to implement the selected or developed algorithms.

1.3 Course policy

- strictly observe the Academic policy of the M. Kozybayev NKSU, the Ethical Code of the M. Kozybayev NKSU, the Rules of Academic Integrity of the M. Kozybaev NKSU;

- all types of academic dishonesty are prohibited;
- come to classes in business attire;
- actively participate in the educational process;

- be tolerant, open and friendly to fellow students, teachers and employees of the M. Kozybaev North Kazakhstan State University;

- promote teamwork and participate in discussions;

- be punctual and obligatory (late arrivals, absences, behavior in the classroom, late submission of work, absence from the exam);

- come to classes in business attire;
- actively participate in the educational process;
- independently and on time to do homework;
- promote teamwork and participate in discussions.

1.4 Prerequisites

1.5 Post-requisites

Writing and defending a master's thesis.

2. Classroom lessons, their content and volume in hours Table 2

	Туре			Form of tr	aining
Week number	of educati onal activity	Topics and content of lessons	Numbe r of hours	Full-time	Full- time with the use of DOT
1	Module 1	: Fundamentals of	Digital Im	aging	
	lecture	Theme1.Formationofdigitalimages.Camerasoftechnicalvision.	1	Multimedi a lecture	Plat form Zoom, an e- leanin g
	practic e	Theme1.Model of imageformation.Typesofimages .Digitalcamera.Imagingproblems.	2	Colloquiu m	Plat form Zoom, an e- leanin g
2	lecture	Theme 2 . Basics of digital imaging	1	Multimedi a lecture	Plat form Zoom, an e- leanin g
	practic e	Theme 2. Digital image processing: image resizing, interpolation of Bayer patterns, image deformation, image filtering in spatial and frequency domains, quality	2	Colloquiu m	Plat form Zoom, an e- leanin g

		assassment			1
		assessment,			
		image			
2	lasteres	compression. Theme 3.		Multimedi	Dlat
3	lecture				Plat
		Algorithms for		a lecture	form
		automatic	1		Zoom,
		image	_		an e-
		segmentation.			leanin
					g
	practic	Theme 3.		Colloquiu	Plat
	e	Review of the		m	form
		main			Zoom,
		algorithms for			an e-
		automatic			leanin
		image			g
		segmentation.	2		
		Comparison of			
		different			
		methods of			
		image			
		segmentation.			
		Edge detectors.			
4	lecture	Theme 4.		Multimedi	Plat
		Algorithms for		a lecture	form
		automatic			Zoom,
		image	1		an e-
		segmentation.			leanin
		C			g
	practic	Theme 4.		Colloquiu	Plat
	e	Algorithms for		m	form
	C	automatic			Zoom,
		image	2		an e-
		segmentation.			leanin
		segmentation.			g
	IWS1	Theme 1		Calculatio	5
	THOT	Popular image		n and	
		compression	25	graphic	
		algorithms .		work	
Modulo 2.	Mathada (and algorithms for	. machina		mnutor
vision prob		inu aigurtinnis 101	macinine	icar inng in C	mputer
5	lecture	Theme 5.		Multimedi	Plat
5	iccure	Supervised 5.	1	a lecture	form
		Learning:	L L	alecture	Zoom,
	1	Leannig:	1	1	ZUUIII.

	1	D 1		1	
		Regression and			an e-
		Classification .			leanin
		Clustering.			g
	practic	Theme 5.		Colloquiu	Plat
	e	Linear		m	form
	C	regression,			Zoom,
		logistic			an e-
		regression.	2		leanin
		Least square			g
		method.			
		Gradient			
		descent method.			
6	lecture			Multimedi	Plat
	iccure	Theme 6.		a lecture	form
				a locture	
		Quality metrics	1		Zoom,
		in machine			an e-
		learning tasks			leanin
					g
	practic	Theme 6. The		Colloquiu	Plat
	e	choice of		m	form
		optimal quality			Zoom,
		criteria, the			an e-
		problem of			leanin
		overfitting, the			g
		size of the	2		
		training sample,			
		regularization,			
		hyperparameters			
		of machine			
		learning			
		algorithms.			
7	lecture	Theme 7.		Multimedi	Plat
· ·	iecture	Metric 7.			
				a lecture	form
		algorithms for	1		Zoom,
		machine	_		an e-
		learning			leanin
					g
	practic	Theme 7. K-		Solving	Plat
	e	nearest		problems	form
	-	neighbors.		r-oorenis	Zoom,
		Distance	2		
		metrics			leanin
1					g

8	lecture practic	Theme 8. Artificial neural networks Theme 8.	1	Multimedi a lecture Solving	Plat form Zoom, an e- leanin g Plat
	e	Single- layer and multi-layer neural networks. Neural network as a universal model.	2	problems	form Zoom, an e- leanin g
9	lecture	Theme 9. Multilayer neural networks	1	Multimedi a lecture	Plat form Zoom, an e- leanin g
	practic e	Theme 9. Error function, overfitting problem, network parameter optimization, gradient descent. Backpropagatio n method. Regularization.	2	Call Oquium	Plat form Zoom, an e- leanin g
	IWS 2	Theme 3 . Determination of the optimal number of neurons in the hidden layer of the neural network.	25	Calculatio n and graphic work	
		nvolutional Artific ition, and Segment		Networks for	r Image

10	lecture practic e	Topic10.Convolutionalartificial neuralnetworksforimageprocessing.Subject10.Basic principlesof building deep	1	Multimedi a lecture Colloquiu m	Plat form Zoom, an e- leanin g Plat form Zoom,
		convolutional neural networks. Activation functions, regularization, convolutional layers, pulling.	2		an e- leanin g
eleven	lecture	Topic11.Applicationofthekeraspython 3 libraryfor constructingthe DCNN.	1	Multimedi a lecture	Plat form Zoom, an e- leanin g
	practic e	Subject 11. Solving the problem of recognizing handwritten numbers. Preparing training datasets. Augmentation of images.	2	Solving problems	Plat form Zoom, an e- leanin g
12	lecture	Topic12.OverviewofDCNNmodelsavailablefromthe keras library	1	Multimedi a lecture	Plat form Zoom, an e- leanin g
	practic e	Topic12.Analysisandapplicationof	2	Colloquiu m	Plat form Zoom,

		DCNN LeNet,			an e-
		VGG 16.			leanin
1.2		Inception - v 3.			g
13	lecture	Topic 1 3. The		Multimedi	Plat
		concept of		a lecture	form
		transfer	1		Zoom,
		learning for	1		an e-
		DCNN.			leanin
					g
	practic	Topic 1 3 .		Colloquiu	Plat
	e	Implementing		m	form
	C	transfer			Zoom,
		learning in	2		an e-
		U			
		keras.			leanin
1.4					g
14	lecture	Theme 14.		Multimedi	Plat
		Research		a lecture	form
		DCNN Mask-			Zoom,
		RCNN for			an e-
		image	1		leanin
		recognition,			g
		classification			-
		and			
		segmentation.			
	practic	Theme 14. The		Solving	Plat
	e	use of a		problems	form
	C	network Mask-		problems	Zoom,
			2		
		RCNN for	2		an e-
		recognition of			leanin
		objects in the			g
		image.			
fifteen	lecture	Theme 15.		Multimedi	Plat
		Research of the		a lecture	form
		network YOLO	1		Zoom,
		for real-time	1		an e-
		image			leanin
		recognition			g
	practic	Theme 15.		Colloquiu	Plat
	e	YOLO network		m	form
		implementation			Zoom,
		in python 3	2		an e-
		in pymon 5			
					leanin
					g

	IWS 3	Topic 3 . Development of a program in python 3 for real-time object recognition in an image.	25	Settlement and graphic work	Plat form Zoom, an e- leanin g
	Preparation the exam	on and passing of	15		
Total hours by	lectures		15		
classroo m type	practice		15		

2.1. Coursework (projects)

3. Independent work of a student under the guidance of a teacher

For independent work of a student under the guidance of a teacher, 15 academic hours are allocated. Within the framework of the IWST hours, consultations are held on the topics of lectures, practical exercises (laboratory exercises), SRO tasks. Consultations are carried out in accordance with the schedule of training sessions. The schedule is at the stand of the Department of Energy and Radioelectronics and on the website http://is.nkzu.edu/diary/sfmanager.asp.

4. Monitoring progress

To assess the educational achievements of students, a pointrating alphabetic system of accounting assessment is used with their transfer to the traditional rating scale.

Point-rating letter system for assessing the accounting of educational achievements of students with their transfer to the traditional scale of grades and ECTS.

Letter system score	Digital equivalent	Points (% content)	Assessment according to the traditional system
А	4	95-100	excellent
A-	3,67	90-94	excellent
B+	3,33	85-89	
В	3,0	80-84	
B-	2,67	75-79	well
C+	2,33	70-74	
С	2,0	65-69	
C-	1,67	60-64	
D+	1,33	55-59	satisfactorily
D	1,0	50-54	
FX	0,5	25-49	unsatisfactory
F	0	0-24]

In the implementation of the current, intermediate control of students' progress, educational achievements are assessed on a 100-point scale for each completed task or answer (the answer in the current classes, on the final assessment of the module, IWS, etc.).

Monitoring of progress must be carried out by discipline modules.

The maximum assessment score for a module is 100 points.

The assessment criteria for assignments in a module are developed by the teacher independently (table 3).

The assessment of the admission rating is determined by the arithmetic mean of the total marks for the final assessment of the module received during the academic period. The final grade for the discipline is cumulative and includes assessments of the admission rating and final control. The assessment of the admission rating is 60% of the final assessment of knowledge in the discipline, and the assessment of the exam is 40% of the final assessment of knowledge in the discipline.

5. Evaluation tools and evaluation criteria by type of control

Table 3	Table	e 3	
---------	-------	-----	--

Control type,	Evaluation tool	Evaluation criteria	Max
duration			score
Control mod 1, 4 week		Correctness of the used mathematical apparatus (formulas)	30
	IWS 1	Compliance of the implemented solution with the parameters of the received task	50
		No math errors	20
	Total		100
Control mod 2, 9 week		Correctness of the used mathematical apparatus (formulas)	30
	IWS 2	Compliance of the implemented solution with the parameters of the received task	50
		Absence of mathematical errors	20
	Total		100
Control mod 3, 15 week		Correctness of the used mathematical apparatus (formulas)	30
	IWS 3	Compliance of the implemented solution with the parameters of the received task	50
		No math errors	20
	Total		100
	TOTAL		100

6.1. List of references

Table 5

No.	Title, year and place of publication		
	Basic literature		
1.	Reinhard Klette Co. Computer vision. Theory and algorithms		
1.	/ per. from English. A . A. Slinkin M .: DMK Press, 2019 .		
	Antonio Ju lli, Sujit Pal Keras Library is a deep learning tool.		
2.	Real ization of neural networks with the help of libraries		
۷.	Theano and T ensorFlow / per. from English. Slinkin A. A		
	M .: DMK Press, 2018 294 p.		
	Shapiro L. Computer vision / L. Shapiro, J. Stockman; per.		
3.	from English. 2nd ed. (email) M .: BI NOM. Laboratory of		
	Knowledge , 2013 752 p.		
	Fla x P. Machine learning. The Science and Art of Building		
4	Algorithms That Extract Knowledge from Data. from English.		
	A. A. Slinkina M .: DMK Press s, 2015400 s.		
	Additional literature		
1.	Scholle F. Deep Learning in Python Peter , 2018 40 0 c.		

6.2. Electronic and Internet resources

- www//nkzu.edu/e-library
- www//bookash.pro
- www//booktech.ru

6.3. Methodological support of the curriculum

Table 6

No.	Name	Location
1.	Educational-methodical complex of	Department of E&R,
	the curriculum " Computer vision in	library 5 corps,
	real time systems " Petropavlovsk:	electronic library

NKSU im. Kozybayev M., 20, 20, city	
of	

6.4. The list of specialized tools Table 7

No.	View	Location
1.	Multimedia cabinet	402/4
2.	Specialized Labora thorium	508a/4